'Most efficient way to pass data from C++ to C#
I am looking for the best way to transfer a large amount of data from C++ (struct or a value class?) into a C# class doing as little data copying as possible. In the sample code below, I have a vector of SubClass objects that has the potential to be very large (10+ million). So I want to avoid a data copy if possible.
Should I/can I just allocate the objects in GC first and use them directly in c++ and forget about the native c++ structures? (Performance is my concern with this one.)
Or, is there some trick that I leverage what is allocated in C++ without causing a data copy?
Here is a sample of something along the lines of what I want to use as a transfer between managed and unmanaged code.
#include <string>
#include <vector>
struct SubClass {
std::string DataItem1;
// lots more here
std::string DataItem50;
};
struct Sample {
int IntValue;
std::string StringValue;
std::vector<std::string> SmallList;
std::vector<SubClass> HugeList;
};
If I can avoid getting into the weeds with pinvoke and COM classes, I would prefer it.
Solution 1:[1]
Following the example from Unity (who uses C#), Native plugin example uses a GC handle to transfer data from C# to C++. We can try the opposite to send data to C++ from C#.
Pin down a C# variable to allow faster copying.
using System;
using System.Collections;
using System.Runtime.InteropServices;
// vertices is a Vector3[], where Vector3 is a struct
// of 3 floats using a sequential layout attribute
void test(){
GCHandle gcVertices = GCHandle.Alloc (vertices, GCHandleType.Pinned);
}
Transfer the handle to C++ using marshaling. It's unavoidable that you have to copy something. Here copying a pointer should be good enough. More on marshaling according to Microsoft doc.
[DllImport("your dll")]
private static extern void SendHandle(IntPtr vertexHandle, int vertexCount);
SendHandle(gcVertices, vertices.Length);
Inside C++, you'll receive the handle as a pointer type to a C++ type of your choosing. In this case, vertices are a list of structs of 3 floats. The reference code decided to use float *. You just need to do pointer arithmetic properly depending on the pointed type, including the case of void *.
extern "C" __decl(dllexport) void SendHandle(float* vertices, int vertexCount);
Here the example code copies data directly from the pointer, but you can also write to the pointer's location.
for (int i = 0 ; i < vertexCount; i++)
{
// read from C# heap
float x = vertices[0];
float y = vertices[1];
float z = vertices[2];
// write to C# heap
*vertices = sqrt(x);
*(vertices + 1) = sqrt(y);
*(vertices + 2) = sqrt(z);
vertices += 3; // because it is a list of struct of 3 floats
}
Clean up the pinned handle from the C# side to resume the garbage collector.
gcVertices.Free();
As for strings, I believe the interop library has an implementation that handles pointer arithmetic and copying for you. You could probably just use a string type directly inside the exposed export function, as long as you specify how to marshal it with the MarshalAs attribute in C# and a library in C++ if you are not converting to the C type char *.
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
| Solution | Source |
|---|---|
| Solution 1 | ZackOfAllTrades |
