'merge dataframes based on multiple columns and thresholds

I have two data.frames with multiple common columns (here: date, city, ctry, and (other_)number).

I would now like to merge them on the above columns but tolerate some level of difference:

threshold.numbers <- 3
threshold.date <- 5  # in days

If the difference between the date entries is > threshold.date (in days) or > threshold.numbers, I don't want the lines to be merged. Similarly, if the entry in city is a substring of the other df's entry in the city column, I want the lines to be merged. [If anyone has a better idea to test for actual city names' similarity, I'd be happy to hear about it.] (And keep the first df's entries of date, city and country but both (other_)number columns and all other columns in the df.

Consider the following example:

df1 <- data.frame(date = c("2003-08-29", "1999-06-12", "2000-08-29", "1999-02-24", "2001-04-17",
                           "1999-06-30", "1999-03-16", "1999-07-16", "2001-08-29", "2002-07-30"),
                  city = c("Berlin", "Paris", "London", "Rome", "Bern",
                           "Copenhagen", "Warsaw", "Moscow", "Tunis", "Vienna"),
                  ctry = c("Germany", "France", "UK", "Italy", "Switzerland",
                           "Denmark", "Poland", "Russia", "Tunisia", "Austria"),
                  number = c(10, 20, 30, 40, 50, 60, 70, 80, 90, 100),
                  col = c("apple", "banana", "pear", "banana", "lemon", "cucumber", "apple", "peach", "cherry", "cherry"))


df2 <- data.frame(date = c("2003-08-29", "1999-06-12", "2000-08-29", "1999-02-24", "2001-04-17", # all identical to df1
                           "1999-06-29", "1999-03-14", "1999-07-17", # all 1-2 days different
                           "2000-01-29", "2002-07-01"), # all very different (> 2 weeks)
                  city = c("Berlin", "East-Paris", "near London", "Rome", # same or slight differences
                           "Zurich", # completely different
                           "Copenhagen", "Warsaw", "Moscow", "Tunis", "Vienna"), # same
                  ctry = c("Germany", "France", "UK", "Italy", "Switzerland", # all the same 
                           "Denmark", "Poland", "Russia", "Tunisia", "Austria"),
                  other_number = c(13, 17, 3100, 45, 51, 61, 780, 85, 90, 101), # slightly different to very different
                  other_col = c("yellow", "green", "blue", "red", "purple", "orange", "blue", "red", "black", "beige"))

Now, I would like to merge the data.frames and receive a df where lines are merged if the above conditions are met.

(The first column is only for your convenience: behind the first digit, which indicates the original case, it shows whether the lines where merged (.) or whether the lines is from df1 (1) or df2 (2).

          date        city        ctry number other_col other_number    other_col2          #comment
 1.  2003-08-29      Berlin     Germany     10     apple              13        yellow      # matched on date, city, number
 2.  1999-06-12       Paris      France     20    banana              17         green      # matched on date, city similar, number - other_number == threshold.numbers
 31  2000-08-29      London          UK     30      pear            <NA>          <NA>      # not matched: number - other_number > threshold.numbers
 32  2000-08-29 near London         UK    <NA>      <NA>            3100          blue      #
 41  1999-02-24        Rome       Italy     40    banana            <NA>          <NA>      # not matched: number - other_number > threshold.numbers
 42  1999-02-24        Rome       Italy   <NA>      <NA>              45           red      #
 51  2001-04-17        Bern Switzerland     50     lemon            <NA>          <NA>      # not matched: cities different (dates okay, numbers okay)
 52  2001-04-17      Zurich Switzerland   <NA>      <NA>              51        purple      #
 6.  1999-06-30  Copenhagen     Denmark     60  cucumber              61        orange      # matched: date difference < threshold.date (cities okay, dates okay)
 71  1999-03-16      Warsaw      Poland     70     apple            <NA>          <NA>      # not matched: number - other_number > threshold.numbers (dates okay)
 72  1999-03-14      Warsaw      Poland   <NA>      <NA>             780          blue      # 
 81  1999-07-16      Moscow      Russia     80     peach            <NA>          <NA>      # not matched: number - other_number > threshold.numbers (dates okay)
 82  1999-07-17      Moscow      Russia   <NA>      <NA>              85           red      #
 91  2001-08-29       Tunis     Tunisia     90    cherry            <NA>          <NA>      # not matched: date difference < threshold.date (cities okay, dates okay)
 92  2000-01-29       Tunis     Tunisia   <NA>      <NA>              90         black      #
101  2002-07-30      Vienna     Austria    100    cherry            <NA>          <NA>      # not matched: date difference < threshold.date (cities okay, dates okay)
102  2002-07-01      Vienna     Austria   <NA>      <NA>             101         beige      #

I tried different implementations of merging them but cannot get the threshold implemented.

EDIT Apologies for unclear formulation - I would like to retain all rows and receive an indicator whether the row is matched, unmatched and from df1 or unmatched and from df2.

the pseudo-code is:

  if there is a case where abs("date_df2" - "date_df1") <= threshold.date:
    if "ctry_df2" == "ctry_df1":
      if "city_df2" ~ "city_df1":
        if abs("number_df2" - "number_df1") <= threshold.numbers:
          merge and go to next row in df2
  else:
    add row to df1```


Solution 1:[1]

I first turned the city names into character vectors, since (if I understood correctly) you want to include city names that are contained within df2.

df1$city<-as.character(df1$city)
df2$city<-as.character(df2$city)

Then merge them by country:

df = merge(df1, df2, by = ("ctry"))

> df
          ctry     date.x     city.x number      col     date.y      city.y other_number other_col
1      Austria 2002-07-30     Vienna    100   cherry 2002-07-01      Vienna          101     beige
2      Denmark 1999-06-30 Copenhagen     60 cucumber 1999-06-29  Copenhagen           61    orange
3       France 1999-06-12      Paris     20   banana 1999-06-12  East-Paris           17     green
4      Germany 2003-08-29     Berlin     10    apple 2003-08-29      Berlin           13    yellow
5        Italy 1999-02-24       Rome     40   banana 1999-02-24        Rome           45       red
6       Poland 1999-03-16     Warsaw     70    apple 1999-03-14      Warsaw          780      blue
7       Russia 1999-07-16     Moscow     80    peach 1999-07-17      Moscow           85       red
8  Switzerland 2001-04-17       Bern     50    lemon 2001-04-17      Zurich           51    purple
9      Tunisia 2001-08-29      Tunis     90   cherry 2000-01-29       Tunis           90     black
10          UK 2000-08-29     London     30     pear 2000-08-29 near London         3100      blue

The library stringr will allow you to see if city.x is within city.y here (see last column):

library(stringr)
df$city_keep<-str_detect(df$city.y,df$city.x) # this returns logical vector if city.x is contained in city.y (works one way)
> df
          ctry     date.x     city.x number      col     date.y      city.y other_number other_col city_keep
1      Austria 2002-07-30     Vienna    100   cherry 2002-07-01      Vienna          101     beige      TRUE
2      Denmark 1999-06-30 Copenhagen     60 cucumber 1999-06-29  Copenhagen           61    orange      TRUE
3       France 1999-06-12      Paris     20   banana 1999-06-12  East-Paris           17     green      TRUE
4      Germany 2003-08-29     Berlin     10    apple 2003-08-29      Berlin           13    yellow      TRUE
5        Italy 1999-02-24       Rome     40   banana 1999-02-24        Rome           45       red      TRUE
6       Poland 1999-03-16     Warsaw     70    apple 1999-03-14      Warsaw          780      blue      TRUE
7       Russia 1999-07-16     Moscow     80    peach 1999-07-17      Moscow           85       red      TRUE
8  Switzerland 2001-04-17       Bern     50    lemon 2001-04-17      Zurich           51    purple     FALSE
9      Tunisia 2001-08-29      Tunis     90   cherry 2000-01-29       Tunis           90     black      TRUE
10          UK 2000-08-29     London     30     pear 2000-08-29 near London         3100      blue      TRUE

Then you can get the difference in days between dates:

df$dayDiff<-abs(as.POSIXlt(df$date.x)$yday - as.POSIXlt(df$date.y)$yday)

and the difference in numbers:

df$numDiff<-abs(df$number - df$other_number)

Here was what the resulting dataframe looks like:

> df
          ctry     date.x     city.x number      col     date.y      city.y other_number other_col city_keep dayDiff numDiff
1      Austria 2002-07-30     Vienna    100   cherry 2002-07-01      Vienna          101     beige      TRUE      29       1
2      Denmark 1999-06-30 Copenhagen     60 cucumber 1999-06-29  Copenhagen           61    orange      TRUE       1       1
3       France 1999-06-12      Paris     20   banana 1999-06-12  East-Paris           17     green      TRUE       0       3
4      Germany 2003-08-29     Berlin     10    apple 2003-08-29      Berlin           13    yellow      TRUE       0       3
5        Italy 1999-02-24       Rome     40   banana 1999-02-24        Rome           45       red      TRUE       0       5
6       Poland 1999-03-16     Warsaw     70    apple 1999-03-14      Warsaw          780      blue      TRUE       2     710
7       Russia 1999-07-16     Moscow     80    peach 1999-07-17      Moscow           85       red      TRUE       1       5
8  Switzerland 2001-04-17       Bern     50    lemon 2001-04-17      Zurich           51    purple     FALSE       0       1
9      Tunisia 2001-08-29      Tunis     90   cherry 2000-01-29       Tunis           90     black      TRUE     212       0
10          UK 2000-08-29     London     30     pear 2000-08-29 near London         3100      blue      TRUE       0    3070

But we want to drop things where city.x was not found within city.y, where the day difference is greater than 5 or the number difference is greater than 3:

df<-df[df$dayDiff<=5 & df$numDiff<=3 & df$city_keep==TRUE,]

> df
     ctry     date.x     city.x number      col     date.y     city.y other_number other_col city_keep dayDiff numDiff
2 Denmark 1999-06-30 Copenhagen     60 cucumber 1999-06-29 Copenhagen           61    orange      TRUE       1       1
3  France 1999-06-12      Paris     20   banana 1999-06-12 East-Paris           17     green      TRUE       0       3
4 Germany 2003-08-29     Berlin     10    apple 2003-08-29     Berlin           13    yellow      TRUE       0       3

What is left are the three rows that you had above (which contained dots in column 1).

Now we can drop the three columns we created, and the date and city from df2:

> df<-subset(df, select=-c(city.y, date.y, city_keep, dayDiff, numDiff))
> df
     ctry     date.x     city.x number      col other_number other_col
2 Denmark 1999-06-30 Copenhagen     60 cucumber           61    orange
3  France 1999-06-12      Paris     20   banana           17     green
4 Germany 2003-08-29     Berlin     10    apple           13    yellow

Solution 2:[2]

Step 1: Merge the data based on "city" and "ctry":

df = merge(df1, df2, by = c("city", "ctry"))

Step 2: Remove rows if the difference between the date entries is > threshold.date (in days):

date_diff = abs(as.numeric(difftime(strptime(df$date.x, format = "%Y-%m-%d"),
                                    strptime(df$date.y, format = "%Y-%m-%d"), units="days")))
index_remove = date_diff > threshold.date
df = df[-index_remove,]

Step 3: Remove rows if the difference between the numbers is > threshhold.number:

number_diff = abs(df$number - df$other_number) 
index_remove = number_diff > threshold.numbers
df = df[-index_remove,]

The data should be merged before applying conditions, in case the rows are not matching.

Solution 3:[3]

An option using data.table (explanations inline):

library(data.table)
setDT(df1)
setDT(df2)

#dupe columns and create ranges for non-equi joins
df1[, c("n", "ln", "un", "d", "ld", "ud") := .(
    number, number - threshold.numbers, number + threshold.numbers,
    date, date - threshold.date, date + threshold.date)]
df2[, c("n", "ln", "un", "d", "ld", "ud") := .(
    other_number, other_number - threshold.numbers, other_number + threshold.numbers,
    date, date - threshold.date, date + threshold.date)]

#perform non-equi join using ctry, num, dates in both ways
res <- rbindlist(list(
    df1[df2, on=.(ctry, n>=ln, n<=un, d>=ld, d<=ud),
        .(date1=x.date, date2=i.date, city1=x.city, city2=i.city, ctry1=x.ctry, ctry2=i.ctry, number, col, other_number, other_col)],
    df2[df1, on=.(ctry, n>=ln, n<=un, d>=ld, d<=ud),
        .(date1=i.date, date2=x.date, city1=i.city, city2=x.city, ctry1=i.ctry, ctry2=x.ctry, number, col, other_number, other_col)]),
    use.names=TRUE, fill=TRUE)

#determine if cities are substrings of one and another
res[, city_match := {
    i <- mapply(grepl, city1, city2) | mapply(grepl, city2, city1)
    replace(i, is.na(i), TRUE)
}]

#just like SQL coalesce (there is a version in dev in rdatatable github)
coalesce <- function(...) Reduce(function(x, y) fifelse(!is.na(y), y, x), list(...))

#for rows that are matching or no matches to be found
ans1 <- unique(res[(city_match), .(date=coalesce(date1, date2),
    city=coalesce(city1, city2),
    ctry=coalesce(ctry1, ctry2),
    number, col, other_number, other_col)])

#for rows that are close in terms of dates and numbers but are diff cities
ans2 <- res[(!city_match), .(date=c(.BY$date1, .BY$date2),
        city=c(.BY$city1, .BY$city2),
        ctry=c(.BY$ctry1, .BY$ctry2),
        number=c(.BY$number, NA),
        col=c(.BY$col, NA),
        other_number=c(NA, .BY$other_number),
        other_col=c(NA, .BY$other_col)),
    names(res)][, seq_along(names(res)) := NULL]

#final desired output
setorder(rbindlist(list(ans1, ans2)), date, city, number, na.last=TRUE)[]

output:

          date        city        ctry number      col other_number other_col
 1: 1999-02-24        Rome       Italy     40   banana           NA      <NA>
 2: 1999-02-24        Rome       Italy     NA     <NA>           45       red
 3: 1999-03-14      Warsaw      Poland     NA     <NA>          780      blue
 4: 1999-03-16      Warsaw      Poland     70    apple           NA      <NA>
 5: 1999-06-12  East-Paris      France     20   banana           17     green
 6: 1999-06-29  Copenhagen     Denmark     60 cucumber           61    orange
 7: 1999-07-16      Moscow      Russia     80    peach           NA      <NA>
 8: 1999-07-17      Moscow      Russia     NA     <NA>           85       red
 9: 2000-01-29       Tunis     Tunisia     NA     <NA>           90     black
10: 2000-08-29      London          UK     30     pear           NA      <NA>
11: 2000-08-29 near London          UK     NA     <NA>         3100      blue
12: 2001-04-17        Bern Switzerland     50    lemon           NA      <NA>
13: 2001-04-17      Zurich Switzerland     NA     <NA>           51    purple
14: 2001-08-29       Tunis     Tunisia     90   cherry           NA      <NA>
15: 2002-07-01      Vienna     Austria     NA     <NA>          101     beige
16: 2002-07-30      Vienna     Austria    100   cherry           NA      <NA>
17: 2003-08-29      Berlin     Germany     10    apple           13    yellow

Solution 4:[4]

You can test the city match with grepl and ctry simple with ==. For those who match until here you can calculate the date difference by converting to date using as.Date and comparing it to a difftime. The number difference is done the same way.

i1 <- seq_len(nrow(df1)) #Store all rows 
i2 <- seq_len(nrow(df2))
res <- do.call(rbind, sapply(seq_len(nrow(df1)), function(i) { #Loop over all rows in df1
  t1 <- which(df1$ctry[i] == df2$ctry) #Match ctry
  t2 <- grepl(df1$city[i], df2$city[t1]) | sapply(df2$city[t1], grepl, df1$city[i]) #Match city
  t1 <- t1[t2 & abs(as.Date(df1$date[i]) - as.Date(df2$date[t1[t2]])) <=
    as.difftime(threshold.date, units = "days") & #Test for date difference
    abs(df1$number[i] - df2$other_number[t1[t2]]) <= threshold.numbers] #Test for number difference
  if(length(t1) > 0) { #Match found
    i1 <<- i1[i1!=i] #Remove row as it was found
    i2 <<- i2[i2!=t1]
    cbind(df1[i,], df2[t1,c("other_number","other_col")], match=".") 
  }
}))
rbind(res
    , cbind(df1[i1,], other_number=NA, other_col=NA, match="1")
    , cbind(df2[i2,1:3], number=NA, col=NA, other_number=df2[i2,4]
            , other_col=df2[i2,5], match="2"))
#          date        city        ctry number      col other_number other_col match
#1   2003-08-29      Berlin     Germany     10    apple           13    yellow     .
#2   1999-06-12       Paris      France     20   banana           17     green     .
#6   1999-06-30  Copenhagen     Denmark     60 cucumber           61    orange     .
#3   2000-08-29      London          UK     30     pear           NA      <NA>     1
#4   1999-02-24        Rome       Italy     40   banana           NA      <NA>     1
#5   2001-04-17        Bern Switzerland     50    lemon           NA      <NA>     1
#7   1999-03-16      Warsaw      Poland     70    apple           NA      <NA>     1
#8   1999-07-16      Moscow      Russia     80    peach           NA      <NA>     1
#9   2001-08-29       Tunis     Tunisia     90   cherry           NA      <NA>     1
#10  2002-07-30      Vienna     Austria    100   cherry           NA      <NA>     1
#31  2000-08-29 near London          UK     NA     <NA>         3100      blue     2
#41  1999-02-24        Rome       Italy     NA     <NA>           45       red     2
#51  2001-04-17      Zurich Switzerland     NA     <NA>           51    purple     2
#71  1999-03-14      Warsaw      Poland     NA     <NA>          780      blue     2
#81  1999-07-17      Moscow      Russia     NA     <NA>           85       red     2
#91  2000-01-29       Tunis     Tunisia     NA     <NA>           90     black     2
#101 2002-07-01      Vienna     Austria     NA     <NA>          101     beige     2

Solution 5:[5]

We can use {powerjoin} :

library(powerjoin)

power_full_join(
  df1, 
  df2, 
  by = ~ 
      # join if one city name contains the other
    (mapply(grepl, .x$city, .y$city) | mapply(grepl, .y$city, .x$city)) &
      # and dates are close enough
      abs(difftime(.x$date, .y$date, units = "days")) <= threshold.date &
      # and numbers are close enough
      abs(.x$number - .y$other_number) <= threshold.numbers,
  conflict = dplyr::coalesce)

#>    number      col other_number other_col       date        city        ctry
#> 1      10    apple           13    yellow 2003-08-29      Berlin     Germany
#> 2      20   banana           17     green 1999-06-12       Paris      France
#> 3      60 cucumber           61    orange 1999-06-30  Copenhagen     Denmark
#> 4      30     pear           NA      <NA> 2000-08-29      London          UK
#> 5      40   banana           NA      <NA> 1999-02-24        Rome       Italy
#> 6      50    lemon           NA      <NA> 2001-04-17        Bern Switzerland
#> 7      70    apple           NA      <NA> 1999-03-16      Warsaw      Poland
#> 8      80    peach           NA      <NA> 1999-07-16      Moscow      Russia
#> 9      90   cherry           NA      <NA> 2001-08-29       Tunis     Tunisia
#> 10    100   cherry           NA      <NA> 2002-07-30      Vienna     Austria
#> 11     NA     <NA>         3100      blue 2000-08-29 near London          UK
#> 12     NA     <NA>           45       red 1999-02-24        Rome       Italy
#> 13     NA     <NA>           51    purple 2001-04-17      Zurich Switzerland
#> 14     NA     <NA>          780      blue 1999-03-14      Warsaw      Poland
#> 15     NA     <NA>           85       red 1999-07-17      Moscow      Russia
#> 16     NA     <NA>           90     black 2000-01-29       Tunis     Tunisia
#> 17     NA     <NA>          101     beige 2002-07-01      Vienna     Austria

Created on 2022-04-14 by the reprex package (v2.0.1)

Solution 6:[6]

Here's a flexible approach that lets you specify any collection of merge criteria you choose.

Prep work

I ensured that all the strings in df1 and df2 were strings, not factors (as noted in several of the other answers). I also wrapped the dates in as.Date to make them real dates.

Specify the merge criteria

Create a list of lists. Each element of the main list is one criterion; the members of a criterion are

  • final.col.name: the name of the column we want in the final table
  • col.name.1: the name of the column in df1
  • col.name.2: the name of the column in df2
  • exact: boolean; should we do exact matching on this column?
  • threshold: threshold (if we aren't doing exact matching)
  • match.function: a function that returns whether or not the rows match (for special cases such as using grepl for string matching; note that this function must be vectorized)
merge.criteria = list(
  list(final.col.name = "date",
       col.name.1 = "date",
       col.name.2 = "date",
       exact = F,
       threshold = 5),
  list(final.col.name = "city",
       col.name.1 = "city",
       col.name.2 = "city",
       exact = F,
       match.function = function(x, y) {
         return(mapply(grepl, x, y) |
                  mapply(grepl, y, x))
       }),
  list(final.col.name = "ctry",
       col.name.1 = "ctry",
       col.name.2 = "ctry",
       exact = T),
  list(final.col.name = "number",
       col.name.1 = "number",
       col.name.2 = "other_number",
       exact = F,
       threshold = 3)
)

Function for merging

This function takes three arguments: the two data frames we want to merge, and the list of match criteria. It proceeds as follows:

  1. Iterate through the match criteria and determine which row pairs do or don't meet all the criteria. (Inspired by @GKi's answer, it uses row indexes instead of doing a full outer join, which may be less memory-intensive for large datasets.)
  2. Create a skeleton data frame with just the rows we want (merged rows in the case of matches, unmerged rows for unmatched records).
  3. Iterate through the columns of the original data frames and use them to populate the desired columns in the new data frame. (Do this first for the columns that appear in the match criteria, and then for any other columns that are left.)
library(dplyr)
merge.data.frames = function(df1, df2, merge.criteria) {
  # Create a data frame with all possible pairs of rows from df1 and rows from
  # df2.
  row.decisions = expand.grid(df1.row = 1:nrow(df1), df2.row = 1:nrow(df2))
  # Iterate over the criteria in merge.criteria.  For each criterion, flag row
  # pairs that don't meet the criterion.
  row.decisions$merge = T
  for(criterion in merge.criteria) {
    # If we're looking for an exact match, test for equality.
    if(criterion$exact) {
      row.decisions$merge = row.decisions$merge &
        df1[row.decisions$df1.row,criterion$col.name.1] == df2[row.decisions$df2.row,criterion$col.name.2]
    }
    # If we're doing a threshhold test, test for difference.
    else if(!is.null(criterion$threshold)) {
      row.decisions$merge = row.decisions$merge &
        abs(df1[row.decisions$df1.row,criterion$col.name.1] - df2[row.decisions$df2.row,criterion$col.name.2]) <= criterion$threshold
    }
    # If the user provided a function, use that.
    else if(!is.null(criterion$match.function)) {
      row.decisions$merge = row.decisions$merge &
        criterion$match.function(df1[row.decisions$df1.row,criterion$col.name.1],
                                 df2[row.decisions$df2.row,criterion$col.name.2])
    }
  }
  # Create the new dataframe.  Just row numbers of the source dfs to start.
  new.df = bind_rows(
    # Merged rows.
    row.decisions %>% filter(merge) %>% select(-merge),
    # Rows from df1 only.
    row.decisions %>% group_by(df1.row) %>% summarize(matches = sum(merge)) %>% filter(matches == 0) %>% select(df1.row),
    # Rows from df2 only.
    row.decisions %>% group_by(df2.row) %>% summarize(matches = sum(merge)) %>% filter(matches == 0) %>% select(df2.row)
  )
  # Iterate over the merge criteria and add columns that were used for matching
  # (from df1 if available; otherwise from df2).
  for(criterion in merge.criteria) {
    new.df[criterion$final.col.name] = coalesce(df1[new.df$df1.row,criterion$col.name.1],
                                                df2[new.df$df2.row,criterion$col.name.2])
  }
  # Now add all the columns from either data frame that weren't used for
  # matching.
  for(other.col in setdiff(colnames(df1),
                           sapply(merge.criteria, function(x) x$col.name.1))) {
    new.df[other.col] = df1[new.df$df1.row,other.col]
  }
  for(other.col in setdiff(colnames(df2),
                           sapply(merge.criteria, function(x) x$col.name.2))) {
    new.df[other.col] = df2[new.df$df2.row,other.col]
  }
  # Return the result.
  return(new.df)
}

Apply the function, and we're done

df = merge.data.frames(df1, df2, merge.criteria)

Sources

This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.

Source: Stack Overflow

Solution Source
Solution 1 Dylan_Gomes
Solution 2
Solution 3 chinsoon12
Solution 4
Solution 5
Solution 6 A. S. K.