'Matplotlib plot with x-axis as binned data and y-axis as the mean value of various variables in the bin?
My apologies if this is rather basic; I can't seem to find a good answer yet because everything refers only to histograms. I have circular data, with a degrees value as the index. I am using pd.cut() to create bins of a few degrees in order to summarize the dataset. Then, I use df.groupby() and .mean() to calculate mean values of all columns for the respective bins.
Now - I would like to plot this, with the bins on the x-axis, and lines for the columns.
I tried to iterate over the columns, adding them as:
for i in df.columns:
ax.plot(df.index,df[i])
However, this gives me the error: "float() argument must be a string or number, not 'pandas._libs.interval.Interval'
Therefore, I assume it wants the x-axis values to be numbers or strings and not intervals. Is there a way I can make this work? To get the dataframe containing the mean values of each variable with respect to bins, I used:
bins = np.arange(0,360,5)
df = df.groupby(pd.cut(df[Dir]),bins)).mean()
Here is what df looks like at the point of plotting - each column includes mean values for each variable 0,1,2 etc. for each bin, which I would like plotted on y-axis, and "Dir" is the index with bins.
0 1 2 3 4 5
Dir
(0, 5] 37.444135 2922.848675 3244.325904 4203.001446 36.262371 37.493497
(5, 10] 42.599494 3248.194328 3582.355759 4061.098517 36.351476 37.148341
(10, 15] 47.277694 2374.379517 2709.435714 2932.064076 36.537377 36.878293
(15, 20] 52.345712 2626.774240 2659.391040 3087.324800 36.114965 36.603918
(20, 25] 57.318976 2207.845000 2228.002353 2811.066176 36.279392 37.165979
(25, 30] 62.454386 2436.117405 2839.255696 3329.441772 36.762896 37.861577
(30, 35] 67.705955 3138.968411 3462.831977 4007.180620 36.462313 37.560977
(35, 40] 72.554786 2554.552620 2548.955581 3079.570159 36.256386 36.819579
(40, 45] 77.501479 2862.703066 2965.408491 2857.901887 36.170788 36.140976
(45, 50] 82.386679 2973.858188 2539.348967 2000.606359 36.067776 37.210645
Solution 1:[1]
We have multiple options, we can obtain the middle of the bin using as shown below. You can also access the left and right side of the bins, as described here. Let me know if you need any further help.
df = pd.DataFrame(data={'x': np.random.uniform(low=0, high=10, size=10), 'y': np.random.exponential(size=10)})
bins = range(0,360,5)
df['bin'] = pd.cut(df['x'], bins)
agg_df = df.groupby(by='bin').mean()
# this is the important step. We can obtain the interval index from the categorical input using this line.
mids = pd.IntervalIndex(agg_df.index.get_level_values('bin')).mid
# to apply for plots:
for col in df.columns:
plt.plot(mids, df[col])
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
| Solution | Source |
|---|---|
| Solution 1 |
