'Layer count mismatch when loading weights from file. ImageAi Custom
I need help... Im using imageai Custom Class to create my own detection...
And here we go
from imageai.Classification.Custom import ClassificationModelTrainer
model_trainer = ClassificationModelTrainer()
model_trainer.setModelTypeAsResNet50()
model_trainer.setDataDirectory("leads_test")
model_trainer.trainModel(num_objects=1, num_experiments=1, enhance_data=True, batch_size=1, show_network_summary=True)
<...>
from imageai.Detection import ObjectDetection
detector = ObjectDetection()
model_path = "leads_test/models/model_ex-001_acc-1.000000.h5"
input_path = "ECG/IMG_0239.jpg"
output_path = "./output/newimage.jpg"
detector.setModelTypeAsTinyYOLOv3()
detector.setModelPath(model_path)
detector.loadModel()
ValueError: Layer count mismatch when loading weights from file. Model expected 24 layers, found 107 saved layers.
Solution 1:[1]
Solved.
I have to use imageai.Classification.Custom import CustomImageClassification instead of imageai.Detection import ObjectDetection
from imageai.Classification.Custom import CustomImageClassification
prediction = CustomImageClassification()
prediction.setModelTypeAsResNet50()
prediction.setModelPath('leads_test/models/model_ex-001_acc-1.000000.h5')
prediction.setJsonPath('leads_test/json/model_class.json')
prediction.loadModel(num_objects=1)
The problem was in different model type while training and prediction.
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
| Solution | Source |
|---|---|
| Solution 1 | kndahl |
