'Is there a shorthand function for obtaining the number of valid entries in each column of a data set?
I actually wrote a code for this already.
Name_Count <-
data.frame(sum(A = !is.na(Name_Database[ ,1]))) %>%
data.frame(sum(B = !is.na(Name_Database[ ,2]))) %>%
data.frame(sum(C = !is.na(Name_Database[ ,3]))) %>%
data.frame(sum(D = !is.na(Name_Database[ ,4]))) %>%
data.frame(sum(E = !is.na(Name_Database[ ,5]))) %>%
data.frame(sum(F = !is.na(Name_Database[ ,6]))) %>%
data.frame(sum(G = !is.na(Name_Database[ ,7]))) %>%
data.frame(sum(H = !is.na(Name_Database[ ,8]))) %>%
data.frame(sum(I = !is.na(Name_Database[ ,9]))) %>%
data.frame(sum(J = !is.na(Name_Database[ ,10]))) %>%
data.frame(sum(K = !is.na(Name_Database[ ,11]))) %>%
data.frame(sum(L = !is.na(Name_Database[ ,12]))) %>%
data.frame(sum(M = !is.na(Name_Database[ ,13]))) %>%
data.frame(sum(N = !is.na(Name_Database[ ,14]))) %>%
data.frame(sum(O = !is.na(Name_Database[ ,15]))) %>%
data.frame(sum(P = !is.na(Name_Database[ ,16]))) %>%
data.frame(sum(Q = !is.na(Name_Database[ ,17]))) %>%
data.frame(sum(R = !is.na(Name_Database[ ,18]))) %>%
data.frame(sum(S = !is.na(Name_Database[ ,19]))) %>%
data.frame(sum(T = !is.na(Name_Database[ ,20]))) %>%
data.frame(sum(U = !is.na(Name_Database[ ,21]))) %>%
data.frame(sum(V = !is.na(Name_Database[ ,22]))) %>%
data.frame(sum(W = !is.na(Name_Database[ ,23]))) %>%
data.frame(sum(X = !is.na(Name_Database[ ,24]))) %>%
data.frame(sum(Y = !is.na(Name_Database[ ,25]))) %>%
data.frame(sum(Z = !is.na(Name_Database[ ,26])))
#> Name_Count
#> A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
#> 1 23 28 45 141 18 47 42 12 27 21 49 8 50 28 3 9 15 40 94 25 5 35 13 3 5 18
This code counts the number of valid entries for each column of names. Each column is organized by each letter.
Even though the code works, it's extremely bloated and I want to find a way to optimize it. Thank you in advance for your assistance.
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
| Solution | Source |
|---|
