'How to recover fitted values from BSTS poisson model (in R)?
I am trying to recover in-sample predictions (fitted values) from a bsts model with a specified poisson response using the bsts
package in R
. The following results in an error: Prediction errors are not supported for Poisson or logit models
.
data("AirPassengers")
# 11 years, monthly data (timestep=monthly) --> 132 observations
Y <- stats::window(AirPassengers, start=c(1949,1), end=c(1959,12))
y <- log10(Y)
ss <- AddLocalLinearTrend(list(), y)
ss <- AddSeasonal(ss, y, nseasons=12, season.duration=1)
bsts.model <- bsts(Y, state.specification=ss, niter=150, family='poisson')
bsts.prediction.errors(bsts.model)
Is there a way to retrieve predictions on model-training data with a poisson model in bsts?
Solution 1:[1]
One way to do it is to extract the contribution of each model component at time t and sum them.
get_yhats2 <- function(fit){
burn <- SuggestBurn(0.1, fit)
X <- fit$state.contributions
niter <- dim(X)[1]
ncomp <- dim(X)[2]
nobs <- dim(X)[3]
# initialize final fit/residuals matrices with zeros
predictions <- matrix(data = 0, nrow = niter - burn, ncol = nobs)
p0 <- predictions
comps <- seq_len(ncomp)
for (comp in comps) {
# pull out the state contributions for this component and transpose to
# a niter x (nobs - burn) array
compX <- X[-seq_len(burn), comp, ]
# accumulate the predictions across each component
predictions <- predictions + compX
}
return(predictions)
}
get_yhats2(bsts.model)
But I also posted here, showing that this method didn't necessarily match expectations I had even in the Gaussian case.
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|---|
Solution 1 | cmcrowley |