'How to encourage a balanced solution in ojAlgo ExpressionBasedModel

I have the following model:

        ExpressionsBasedModel model = new ExpressionsBasedModel();

        Variable va = model.addVariable("va")
                .lower(0);

        Variable vb = model.addVariable("vb")
                .lower(0);

        Variable vc = model.addVariable("vc")
                .lower(0);

        Variable vd = model.addVariable("vd")
                .lower(0);

        Variable ve = model.addVariable("ve")
                .lower(0);

        Expression ef = model.addExpression("ef")
                .lower(0);

        Expression eg = model.addExpression("eg")
                .lower(0);

        Expression eh = model.addExpression("eh")
                .lower(-240);

        Expression ei = model.addExpression("ei")
                .lower(0);

        Expression ej = model.addExpression("ej")
                .lower(0);

        Expression ek = model.addExpression("ek")
                .lower(0);

        Expression el = model.addExpression("el")
                .lower(-2000);

        ef.set(va, -50);
        el.set(va, -100);
        eg.set(va, 100);

        eh.set(vb, -30);
        ef.set(vb, 40);
        ej.set(vb, 20);

        ek.set(vc, -30);
        eg.set(vc, -30);
        ei.set(vc, 60);

        ei.set(vd, -30);
        eg.set(vd, -30);
        ek.set(vd, 60);

        ej.set(ve, -40);
        el.set(ve, -40);
        ek.set(ve, 20);

        ei.weight(1);
        ek.weight(1);

        /*
         * These next 2 lines required to get balanced solution.
         * Without them ei = 720 and ek = 0.
         */
//        ek.lower(360);
//        ei.lower(360);

        model.maximise();

        BasicLogger.debug(model);

Although ei and ek are equally weighted, the solution I get is:

############################################
0 <= va: 6.4 <= 6.4
0 <= vb: 8 <= 8
0 <= vc: 15.111111 (300)
0 <= vd: 6.222222 (300)
0 <= ve: 4 (200) <= 4
0 <= ef: 0.0
0 <= eg: 0.0
-240 <= eh: -240.0
0 <= ei: 720.0
0 <= ej: 0.0
0 <= ek: -0.0
-2000 <= el: -800.0
############################################

ei == 720, ek == 0.

I would prefer a solution in which ei and ek are as balanced as possible, (ei == 360, ek == 360). Is there some way of encoding that requirement for "as balanced as possible" as a weighted expression?

In this specific example I have commented out the lower value constraint that actually result in the behavior I want. In real life, the model is dynamic and I may have 5 equally weighted expressions. I won't know the correct values in order to set the lower constraints.



Sources

This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.

Source: Stack Overflow

Solution Source