'how correctly set loss_weights or class_weights for binary cross_entropy?

how correctly set loss_weights for method compile() or class_weights for fit(). I use binary cross_entropy. I trying train model for binary classification. My labels has two chanels [0,1][0,1] for each class. My model.summary():

    Model: "functional_1"
__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to                     
==================================================================================================
input_1 (InputLayer)            [(None, 256, 256, 1) 0                                            
__________________________________________________________________________________________________
conv2d (Conv2D)                 (None, 256, 256, 64) 640         input_1[0][0]                    
__________________________________________________________________________________________________
batch_normalization (BatchNorma (None, 256, 256, 64) 256         conv2d[0][0]                     
__________________________________________________________________________________________________
conv2d_1 (Conv2D)               (None, 256, 256, 64) 36928       batch_normalization[0][0]        
__________________________________________________________________________________________________
batch_normalization_1 (BatchNor (None, 256, 256, 64) 256         conv2d_1[0][0]                   
__________________________________________________________________________________________________
max_pooling2d (MaxPooling2D)    (None, 128, 128, 64) 0           batch_normalization_1[0][0]      
__________________________________________________________________________________________________
conv2d_2 (Conv2D)               (None, 128, 128, 128 73856       max_pooling2d[0][0]              
__________________________________________________________________________________________________
batch_normalization_2 (BatchNor (None, 128, 128, 128 512         conv2d_2[0][0]                   
__________________________________________________________________________________________________
conv2d_3 (Conv2D)               (None, 128, 128, 128 147584      batch_normalization_2[0][0]      
__________________________________________________________________________________________________
batch_normalization_3 (BatchNor (None, 128, 128, 128 512         conv2d_3[0][0]                   
__________________________________________________________________________________________________
max_pooling2d_1 (MaxPooling2D)  (None, 64, 64, 128)  0           batch_normalization_3[0][0]      
__________________________________________________________________________________________________
conv2d_4 (Conv2D)               (None, 64, 64, 256)  295168      max_pooling2d_1[0][0]            
__________________________________________________________________________________________________
batch_normalization_4 (BatchNor (None, 64, 64, 256)  1024        conv2d_4[0][0]                   
__________________________________________________________________________________________________
conv2d_5 (Conv2D)               (None, 64, 64, 256)  590080      batch_normalization_4[0][0]      
__________________________________________________________________________________________________
batch_normalization_5 (BatchNor (None, 64, 64, 256)  1024        conv2d_5[0][0]                   
__________________________________________________________________________________________________
max_pooling2d_2 (MaxPooling2D)  (None, 32, 32, 256)  0           batch_normalization_5[0][0]      
__________________________________________________________________________________________________
conv2d_6 (Conv2D)               (None, 32, 32, 512)  1180160     max_pooling2d_2[0][0]            
__________________________________________________________________________________________________
batch_normalization_6 (BatchNor (None, 32, 32, 512)  2048        conv2d_6[0][0]                   
__________________________________________________________________________________________________
conv2d_7 (Conv2D)               (None, 32, 32, 512)  2359808     batch_normalization_6[0][0]      
__________________________________________________________________________________________________
batch_normalization_7 (BatchNor (None, 32, 32, 512)  2048        conv2d_7[0][0]                   
__________________________________________________________________________________________________
max_pooling2d_3 (MaxPooling2D)  (None, 16, 16, 512)  0           batch_normalization_7[0][0]      
__________________________________________________________________________________________________
conv2d_8 (Conv2D)               (None, 16, 16, 1024) 4719616     max_pooling2d_3[0][0]            
__________________________________________________________________________________________________
batch_normalization_8 (BatchNor (None, 16, 16, 1024) 4096        conv2d_8[0][0]                   
__________________________________________________________________________________________________
conv2d_9 (Conv2D)               (None, 16, 16, 1024) 9438208     batch_normalization_8[0][0]      
__________________________________________________________________________________________________
batch_normalization_9 (BatchNor (None, 16, 16, 1024) 4096        conv2d_9[0][0]                   
__________________________________________________________________________________________________
up_sampling2d (UpSampling2D)    (None, 32, 32, 1024) 0           batch_normalization_9[0][0]      
__________________________________________________________________________________________________
conv2d_10 (Conv2D)              (None, 32, 32, 512)  2097664     up_sampling2d[0][0]              
__________________________________________________________________________________________________
concatenate (Concatenate)       (None, 32, 32, 1024) 0           batch_normalization_7[0][0]      
                                                                 conv2d_10[0][0]                  
__________________________________________________________________________________________________
conv2d_11 (Conv2D)              (None, 32, 32, 512)  4719104     concatenate[0][0]                
__________________________________________________________________________________________________
batch_normalization_10 (BatchNo (None, 32, 32, 512)  2048        conv2d_11[0][0]                  
__________________________________________________________________________________________________
conv2d_12 (Conv2D)              (None, 32, 32, 512)  2359808     batch_normalization_10[0][0]     
__________________________________________________________________________________________________
batch_normalization_11 (BatchNo (None, 32, 32, 512)  2048        conv2d_12[0][0]                  
__________________________________________________________________________________________________
up_sampling2d_1 (UpSampling2D)  (None, 64, 64, 512)  0           batch_normalization_11[0][0]     
__________________________________________________________________________________________________
conv2d_13 (Conv2D)              (None, 64, 64, 256)  524544      up_sampling2d_1[0][0]            
__________________________________________________________________________________________________
concatenate_1 (Concatenate)     (None, 64, 64, 512)  0           batch_normalization_5[0][0]      
                                                                 conv2d_13[0][0]                  
__________________________________________________________________________________________________
conv2d_14 (Conv2D)              (None, 64, 64, 256)  1179904     concatenate_1[0][0]              
__________________________________________________________________________________________________
batch_normalization_12 (BatchNo (None, 64, 64, 256)  1024        conv2d_14[0][0]                  
__________________________________________________________________________________________________
conv2d_15 (Conv2D)              (None, 64, 64, 256)  590080      batch_normalization_12[0][0]     
__________________________________________________________________________________________________
batch_normalization_13 (BatchNo (None, 64, 64, 256)  1024        conv2d_15[0][0]                  
__________________________________________________________________________________________________
up_sampling2d_2 (UpSampling2D)  (None, 128, 128, 256 0           batch_normalization_13[0][0]     
__________________________________________________________________________________________________
conv2d_16 (Conv2D)              (None, 128, 128, 128 131200      up_sampling2d_2[0][0]            
__________________________________________________________________________________________________
concatenate_2 (Concatenate)     (None, 128, 128, 256 0           batch_normalization_3[0][0]      
                                                                 conv2d_16[0][0]                  
__________________________________________________________________________________________________
conv2d_17 (Conv2D)              (None, 128, 128, 128 295040      concatenate_2[0][0]              
__________________________________________________________________________________________________
batch_normalization_14 (BatchNo (None, 128, 128, 128 512         conv2d_17[0][0]                  
__________________________________________________________________________________________________
conv2d_18 (Conv2D)              (None, 128, 128, 128 147584      batch_normalization_14[0][0]     
__________________________________________________________________________________________________
batch_normalization_15 (BatchNo (None, 128, 128, 128 512         conv2d_18[0][0]                  
__________________________________________________________________________________________________
up_sampling2d_3 (UpSampling2D)  (None, 256, 256, 128 0           batch_normalization_15[0][0]     
__________________________________________________________________________________________________
conv2d_19 (Conv2D)              (None, 256, 256, 64) 32832       up_sampling2d_3[0][0]            
__________________________________________________________________________________________________
concatenate_3 (Concatenate)     (None, 256, 256, 128 0           batch_normalization_1[0][0]      
                                                                 conv2d_19[0][0]                  
__________________________________________________________________________________________________
conv2d_20 (Conv2D)              (None, 256, 256, 64) 73792       concatenate_3[0][0]              
__________________________________________________________________________________________________
batch_normalization_16 (BatchNo (None, 256, 256, 64) 256         conv2d_20[0][0]                  
__________________________________________________________________________________________________
conv2d_21 (Conv2D)              (None, 256, 256, 64) 36928       batch_normalization_16[0][0]     
__________________________________________________________________________________________________
batch_normalization_17 (BatchNo (None, 256, 256, 64) 256         conv2d_21[0][0]                  
__________________________________________________________________________________________________
conv2d_22 (Conv2D)              (None, 256, 256, 2)  130         batch_normalization_17[0][0]     
==================================================================================================
Total params: 31,054,210
Trainable params: 31,042,434
Non-trainable params: 11,776
__________________________________________________________________________________________________
None

I didn't find any example for binary cross entropy. Ways [1.0,2.0] and {0:1.0,1:2.0} respectively for methods compile and fit get errors and dont work for me.



Sources

This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.

Source: Stack Overflow

Solution Source