'Having issues in transforming my data for further analysis In R
I have a dataset here:
'''dataset
I want to perform linear and multiple regression.MoralRelationship and SkeletalP are both dependent variables while others are independent. I tried all the various method of Transformation I know but it did not yield any meaningful result from my diagnostic plot
I did this:
lm1<- lm(MoralRelationship ~ RThumb + RTindex + RTmid + RTFourth + RTFifth + Lthumb + Lindex
+ LTMid + LTFourth + LTfifth + BldGRP1 + BlDGR2, data=data)
I did same for SkeletalP
I did adiagnostic plot for both. then Tried to normalize the variables because there is correlation nor linearity. I took square term, log ,Sqrtof all independent variables also,log,1/x but no better output.
I also did
`lm(SkeletalP ~ RThumb + I(RThumb^2), data=data)`
if i will get a better result with one variable.
The independent variables are right skewed except for ANB which is normally distributed.
is there method I can use to transform my data? most importantly, to be uniformly distributed so that i can perform other statistical test.
Solution 1:[1]
Your dataset is kind of small. You can try dimensionality reduction like PCA, but I don't think it's appropriate here. It's also harder to interpret.
Have you tried other models? Tuning might help the fit of your regression models (e.g. Lasso/Ridge L1/L2 regulation)
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
| Solution | Source |
|---|---|
| Solution 1 | OTA |
