'Expectation Maximization using a Poisson likelihood function
I am trying to apply the expectation-maximization algorithm to estimate missing count data but all the packages in R, such as missMethods, assume a multivariate Gaussian distribution. How would I apply the expectation-maximization algorithm to estimate missing count data assuming a Poisson distribution?
Say we have data that look like this:
x <- c(100, 96, 79, 109, 111, NA, 93, 95, 119, 90, 121, 96, NA,
NA, 85, 95, 110, 97, 87, 104, 101, 87, 87, NA, 89, NA,
113, NA, 95, NA, 119, 115, NA, 105, NA, 80, 90, 108, 90,
99, 111, 93, 99, NA, 87, 89, 87, 126, 101, 106)
Applying impute_EM using missMethods (missMethods::impute_EM(x, stochastic = FALSE)) gives an answer but the data are not continuous but discrete.
I understand that questions like these require a minimum, reproducible example, but I honestly do not know where to start. Even suggested reading to point me in the right direction would be helpful.
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
| Solution | Source |
|---|
