'Example of Big O of 2^n
So I can picture what an algorithm is that has a complexity of n^c, just the number of nested for loops.
for (var i = 0; i < dataset.len; i++ {
for (var j = 0; j < dataset.len; j++) {
//do stuff with i and j
}
}
Log is something that splits the data set in half every time, binary search does this (not entirely sure what code for this looks like).
But what is a simple example of an algorithm that is c^n or more specifically 2^n. Is O(2^n) based on loops through data? Or how data is split? Or something else entirely?
Solution 1:[1]
Think about e.g. iterating over all possible subsets of a set. This kind of algorithms is used for instance for a generalized knapsack problem.
If you find it hard to understand how iterating over subsets translates to O(2^n), imagine a set of n switches, each of them corresponding to one element of a set. Now, each of the switches can be turned on or off. Think of "on" as being in the subset. Note, how many combinations are possible: 2^n.
If you want to see an example in code, it's usually easier to think about recursion here, but I can't think od any other nice and understable example right now.
Solution 2:[2]
Consider that you want to guess the PIN of a smartphone, this PIN is a 4-digit integer number. You know that the maximum number of bits to hold a 4-digit number is 14 bits. So, you will have to guess the value, the 14-bit correct combination let's say, of this PIN out of the 2^14 = 16384 possible values!!
The only way is to brute force. So, for simplicity, consider this simple 2-bit word that you want to guess right, each bit has 2 possible values, 0 or 1. So, all the possibilities are:
00
01
10
11
We know that all possibilities of an n-bit word will be 2^n possible combinations. So, 2^2 is 4 possible combinations as we saw earlier.
The same applies to the 14-bit integer PIN, so guessing the PIN would require you to solve a 2^14 possible outcome puzzle, hence an algorithm of time complexity O(2^n).
So, those types of problems, where combinations of elements in a set S differs, and you will have to try to solve the problem by trying all possible combinations, will have this O(2^n) time complexity. But, the exponentiation base does not have to be 2. In the example above it's of base 2 because each element, each bit, has two possible values which will not be the case in other problems.
Another good example of O(2^n) algorithms is the recursive knapsack. Where you have to try different combinations to maximize the value, where each element in the set, has two possible values, whether we take it or not.
The Edit Distance problem is an O(3^n) time complexity since you have 3 decisions to choose from for each of the n characters string, deletion, insertion, or replace.
Solution 3:[3]
int Fibonacci(int number)
{
if (number <= 1) return number;
return Fibonacci(number - 2) + Fibonacci(number - 1);
}
Growth doubles with each additon to the input data set. The growth curve of an O(2N) function is exponential - starting off very shallow, then rising meteorically. My example of big O(2^n), but much better is this:
public void solve(int n, String start, String auxiliary, String end) {
if (n == 1) {
System.out.println(start + " -> " + end);
} else {
solve(n - 1, start, end, auxiliary);
System.out.println(start + " -> " + end);
solve(n - 1, auxiliary, start, end);
}
In this method program prints all moves to solve "Tower of Hanoi" problem. Both examples are using recursive to solve problem and had big O(2^n) running time.
Solution 4:[4]
c^N = All combinations of n elements from a c sized alphabet.
More specifically 2^N is all numbers representable with N bits.
The common cases are implemented recursively, something like:
vector<int> bits;
int N
void find_solution(int pos) {
if (pos == N) {
check_solution();
return;
}
bits[pos] = 0;
find_solution(pos + 1);
bits[pos] = 1;
find_solution(pos + 1);
}
Solution 5:[5]
Here is a code clip that computes value sum of every combination of values in a goods array(and value is a global array variable):
fun boom(idx: Int, pre: Int, include: Boolean) {
if (idx < 0) return
boom(idx - 1, pre + if (include) values[idx] else 0, true)
boom(idx - 1, pre + if (include) values[idx] else 0, false)
println(pre + if (include) values[idx] else 0)
}
As you can see, it's recursive. We can inset loops to get Polynomial complexity, and using recursive to get Exponential complexity.
Solution 6:[6]
Here are two simple examples in python with Big O/Landau (2^N):
#fibonacci
def fib(num):
if num==0 or num==1:
return num
else:
return fib(num-1)+fib(num-2)
num=10
for i in range(0,num):
print(fib(i))
#tower of Hanoi
def move(disk , from, to, aux):
if disk >= 1:
# from twoer , auxilart
move(disk-1, from, aux, to)
print ("Move disk", disk, "from rod", from_rod, "to rod", to_rod)
move(disk-1, aux, to, from)
n = 3
move(n, 'A', 'B', 'C')
Solution 7:[7]
Assuming that a set is a subset of itself, then there are 2? possible subsets for a set with n elements.
think of it this way. to make a subset, lets take one element. this element has two possibilities in the subset you're creating: present or absent. the same applies for all the other elements in the set. multiplying all these possibilities, you arrive at 2?.
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
| Solution | Source |
|---|---|
| Solution 1 | Marandil |
| Solution 2 | |
| Solution 3 | |
| Solution 4 | Sorin |
| Solution 5 | boileryao |
| Solution 6 | grepit |
| Solution 7 |
