'ElasticSearch aggregate on a scripted nested field
I have the following mapping in my ElasticSearch index (simplified as the other fields are irrelevant:
{
"test": {
"mappings": {
"properties": {
"name": {
"type": "keyword"
},
"entities": {
"type": "nested",
"properties": {
"text_property": {
"type": "text"
},
"float_property": {
"type": "float"
}
}
}
}
}
}
}
The data looks like this (again simplified):
[
{
"name": "a",
"entities": [
{
"text_property": "foo",
"float_property": 0.2
},
{
"text_property": "bar",
"float_property": 0.4
},
{
"text_property": "baz",
"float_property": 0.6
}
]
},
{
"name": "b",
"entities": [
{
"text_property": "foo",
"float_property": 0.9
}
]
},
{
"name": "c",
"entities": [
{
"text_property": "foo",
"float_property": 0.2
},
{
"text_property": "bar",
"float_property": 0.9
}
]
}
]
I'm trying perform a bucket aggregation on the maximum value of float_property for each document. So for the example above, the following would be the desired response:
...
{
"buckets": [
{
"key": "0.9",
"doc_count": 2
},
{
"key": "0.6",
"doc_count": 1
}
]
}
as doc a's highest nested value for float_property is 0.6, b's is 0.9 and c's is 0.9.
I've tried using a mixture of nested and aggs, along with runtime_mappings, but I'm not sure in which order to use these, or if this is even possible.
Solution 1:[1]
I created the index with your mappings changing float_property type to double.
PUT testindex
{
"mappings": {
"properties": {
"name": {
"type": "keyword"
},
"entities": {
"type": "nested",
"include_in_parent": true,
"properties": {
"text_property": {
"type": "text"
},
"float_property": {
"type": "double"
}
}
}
}
}
}
Added "include_in_parent":true for "nested" type
Indexed the documents:
PUT testindex/_doc/1
{
"name": "a",
"entities": [
{
"text_property": "foo",
"float_property": 0.2
},
{
"text_property": "bar",
"float_property": 0.4
},
{
"text_property": "baz",
"float_property": 0.6
}
]
}
PUT testindex/_doc/2
{
"name": "b",
"entities": [
{
"text_property": "foo",
"float_property": 0.9
}
]
}
PUT testindex/_doc/3
{
"name": "c",
"entities": [
{
"text_property": "foo",
"float_property": 0.2
},
{
"text_property": "bar",
"float_property": 0.9
}
]
}
Then Terms Aggregation on nested field:
POST testindex/_search
{
"from": 0,
"size": 30,
"query": {
"match_all": {}
},
"aggregations": {
"entities.float_property": {
"terms": {
"field": "entities.float_property"
}
}
}
}
It produce the aggregation result as below:
"aggregations" : {
"entities.float_property" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : 0.2,
"doc_count" : 2
},
{
"key" : 0.9,
"doc_count" : 2
},
{
"key" : 0.4,
"doc_count" : 1
},
{
"key" : 0.6,
"doc_count" : 1
}
]
}
}
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
| Solution | Source |
|---|---|
| Solution 1 | Nishikant Tayade |
