'CTMC problem: How to calculate mean MLE, bias, mean SE, SE and CI for a Continuous Time Markov Chain simulation dataset in R?

Given a 3-state CTMC, I would like to generate 1000 datasets and record all their transitions and transition times on the time duration [0,100] for a 3-state continuous-time Markov chain with transition rate matrix and find the MLE for all parameters and their mean, SE, SD and bias of the MLEs and CI for each parameter. I'm using the MSM package in R, I'm not sure if the first-step is correct. And What to do next to find the mean, SE,etc.? Thank you!

Here's the code:

qmatrix<-rbind(c( -1.55,0.5,0.7),c(1.0,-2.5,0.8),c(0.55,2.0,-1.5 ))
sim.msm(qmatrix, maxtime=100, covs=NULL, beta=NULL, obstimes=0, start=1, mintime=0)

Here's the output:

$states
  [1] 1 2 3 2 3 2 1 3 2 1 3 2 1 2 3 1 2 3 2 1 2 1 2 3 2 1 3 2 1 3 2 1 3 2 3 2 1 3 2 1 3 2 3 2 1 3 1 3 2 1 3 2 1 3 2 3 2
 [58] 3 2 3 2 3 2 3 1 3 2 1 2 3 2 3 1 2 3 2 1 3 2 1 3 2 1 3 1 2 1 2 1 3 2 1 2 3 2 1 2 1 3 2 3 1 2 1 2 3 2 1 3 1 3 1 3 2
[115] 3 2 1 3 1 3 1 2 1 2 1 2 3 1 3 2 3 2 1 3 1 3 2 1 2 3 2 1 3 2 3 2 3 1 3 2 1 3 2 1 3 2 3 1 2 1 2 3 1 3 2 1 2 3 1 3 2
[172] 1 2 1 2 3 2 3 2 1 2 1 3 2 3 2 3 2 3 2 1 2 3 2 1 3 2 1 1

$times
  [1]   0.000000   1.337596   1.362191   1.476702   1.555734   1.861048   1.872354   2.028488   2.424991   2.656919
 [11]   3.442822   3.536488   3.748460   5.456584   5.613555   5.660168   5.867178   6.011677   6.085615   6.141217
 [21]   7.500027   7.831883   8.741804   9.022980   9.075131  10.008952  10.587310  10.724296  11.720231  11.773875
 [31]  11.975656  12.256983  12.472417  12.783526  12.848953  12.953589  14.743587  15.832113  15.874583  16.017451
 [41]  16.461453  16.731139  16.874843  17.035627  17.597629  19.856766  19.872131  20.431187  20.702377  21.098359
 [51]  21.137319  21.365903  22.790554  23.148535  23.442444  24.257172  24.621436  24.831465  26.093660  26.308910
 [61]  27.453272  27.582364  27.698166  27.937213  27.940383  28.397250  28.721288  28.729847  28.830485  30.165057
 [71]  30.321897  30.447654  30.452361  30.777617  31.018373  32.301805  32.993770  33.191359  33.729895  33.871943
 [81]  34.119537  34.194971  34.253327  35.725821  35.884895  36.925904  38.274757  39.107009  39.277357  40.227662
 [91]  40.609264  40.901967  42.510962  43.171889  43.605517  44.313961  44.541594  45.683055  46.879402  46.905675
[101]  47.481479  48.257792  48.544124  48.971349  49.013105  50.707812  51.074451  52.061199  52.154260  52.612230
[111]  53.565019  53.728064  54.495656  54.786598  54.873416  54.988014  55.234529  55.423862  57.328118  57.928870
[121]  57.960640  59.943583  59.961192  60.841125  61.443912  62.087233  62.219001  62.265142  62.461134  62.830230
[131]  62.984355  63.351908  63.423539  63.728888  64.180341  64.459818  64.909733  65.034425  66.138596  66.606237
[141]  67.459424  67.593525  67.802345  68.291826  68.787457  68.811446  69.303668  69.435817  70.666894  70.754037
[151]  70.858464  71.311939  71.769933  74.052097  75.697696  76.148180  76.389240  77.002067  77.510761  77.748987
[161]  78.974831  79.153566  79.814880  79.959816  80.409660  80.762432  84.893508  85.828107  86.498693  87.739144
[171]  87.963883  87.989974  88.628014  89.716151  90.027518  90.383951  90.439742  90.730203  90.772182  90.906435
[181]  91.088374  91.281104  91.716445  91.885433  92.063158  92.063926  93.110963  94.336095  95.043027  95.661818
[191]  96.170785  98.203715  98.548922  98.566083  98.910060  99.289348  99.358420  99.579823 100.000000

$qmatrix
      [,1] [,2] [,3]
[1,] -1.55  0.5  0.7
[2,]  1.00 -2.5  0.8
[3,]  0.55  2.0 -1.5
r


Sources

This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.

Source: Stack Overflow

Solution Source