When using the scikit-learn library in Python, I can use the CountVectorizer to create ngrams of a desired length (e.g. 2 words) like so: from sklearn.metrics.
magento-layout-xml
azure-eventhub
concourse-git-resource
negotiate
draggable
cryptoswift
test-project
vaadin-grid
cassandra-driver
s3-batch
express-http-proxy
typescript2.0
passive-mode
nibble
delphi-6
vstack
angular-dynamic-forms
pdk
chef-zero
android-constraintlayout
py2neo
msdasql
squishit
apache-modules
feedback
archlinux-arm
tree-balancing
part-of-speech
kontakt.io
foundry-slate