When using the scikit-learn library in Python, I can use the CountVectorizer to create ngrams of a desired length (e.g. 2 words) like so: from sklearn.metrics.
django-2.x
pyo3
cqlsh
gate
fs-extra
forward-compatibility
torchaudio
cascade
nemlogin
nstableviewcell
clickhouse-go
mleap
azure-china
gethostbyname
bundle-install
reverse-engineering
formwizard
apache-airflow
java.lang.class
ocg
nltokenizer
language-design
omniauth
event-simulation
reactjs-flux
ameritrade
karate
checkbox
webobjects
atan2