When using the scikit-learn library in Python, I can use the CountVectorizer to create ngrams of a desired length (e.g. 2 words) like so: from sklearn.metrics.
node.js-addon
vue-storefront
nest-winston
sonarscanner
.net-core-logging
aiml
nskeyedarchiver
idle-timer
uiswipegesturerecognizer
python-typing
perfect
screen-density
serverless-webpack-plugin
jetty-httpclient
function-points
grails-3.3
stdvector
animated-gif
tagify
constructor-injection
mariadb4j
macos-monterey
odeint
apache-commons-dbcp
typed-arrays
camediatiming
google-analytics-userid
tizen
r2jags
salesforce-flow