When using the scikit-learn library in Python, I can use the CountVectorizer to create ngrams of a desired length (e.g. 2 words) like so: from sklearn.metrics.
heap-memory
synced-folder
tfs-power-tools
opensea-api
aes-gcm
buildfire
audit-tables
angular5
fuser
deprecation-warning
market-basket-analysis
programdata
builder
ilias
ngb-pagination
special-folders
mplab-x
maximumslidingwindow
nsnumberformatter
rubocop-rspec
reactive-property
os-command-injection
postman-pre-request-script
flutter-textformfield
t4
tcpclient
saaj
nib
logback
database-indexes