'valid way to calculate angle between 2 CLLocations?
Is this a valid way to calculate an angle (in radians) from one CLLocation to another?
-(float)angleFromLocation:(CLLocationCoordinate2D)start toLocation:(CLLocationCoordinate2D)end {
float deltaX = start.latitude - end.latitude;
float deltaY = start.longitude - end.longitude;
float ang = atan2(deltaY, deltaX);
return ang;}
Please advise!
Any help will be much appreciated.
Solution 1:[1]
Swift 4 version:
extension FloatingPoint {
var degreesToRadians: Self { return self * .pi / 180 }
var radiansToDegrees: Self { return self * 180 / .pi }
}
extension CLLocationCoordinate2D: Equatable {
func heading(to: CLLocationCoordinate2D) -> Double {
let lat1 = self.latitude.degreesToRadians
let lon1 = self.longitude.degreesToRadians
let lat2 = to.latitude.degreesToRadians
let lon2 = to.longitude.degreesToRadians
let dLon = lon2 - lon1
let y = sin(dLon) * cos(lat2)
let x = cos(lat1) * sin(lat2) - sin(lat1) * cos(lat2) * cos(dLon)
let headingDegrees = atan2(y, x).radiansToDegrees
if headingDegrees >= 0 {
return headingDegrees
} else {
return headingDegrees + 360
}
}
}
Solution 2:[2]
I used a variant of this question and answer and it works well:
double DegreesToRadians(double degrees) {return degrees * M_PI / 180.0;};
double RadiansToDegrees(double radians) {return radians * 180.0/M_PI;};
- (double)bearingFromLocation:(CLLocation *)fromLocation toLocation:(CLLocation *)toLocation
{
double lat1 = DegreesToRadians(fromLocation.coordinate.latitude);
double lon1 = DegreesToRadians(fromLocation.coordinate.longitude);
double lat2 = DegreesToRadians(toLocation.coordinate.latitude);
double lon2 = DegreesToRadians(toLocation.coordinate.longitude);
double dLon = lon2 - lon1;
double y = sin(dLon) * cos(lat2);
double x = cos(lat1) * sin(lat2) - sin(lat1) * cos(lat2) * cos(dLon);
double radiansBearing = atan2(y, x);
double degreesBearing = RadiansToDegrees(radiansBearing);
if (degreesBearing >= 0) {
return degreesBearing;
} else {
return degreesBearing + 360.0;
}
}
Solution 3:[3]
The best method I found for this computation was to use the Spherical Law of Cosines. There is a C function to do this available here on github called headingInDegrees. It takes two lat/long pairs and returns heading:
/*-------------------------------------------------------------------------
* Given two lat/lon points on earth, calculates the heading
* from lat1/lon1 to lat2/lon2.
*
* lat/lon params in degrees
* result in degrees
*-------------------------------------------------------------------------*/
double headingInDegrees(double lat1, double lon1, double lat2, double lon2);
Since a CLLocationCoordinate2d contains latitude and longitude, it is easy to pass those two fields to this function and get the heading back.
Solution 4:[4]
I had some problems using the given answer where there were certain locations which would give the wrong result. My solution is based off https://www.sunearthtools.com/tools/distance.php#txtDist_3
extension CLLocationCoordinate2D {
func getRadiansFrom(degrees: Double ) -> Double {
return degrees * .pi / 180
}
func getDegreesFrom(radians: Double) -> Double {
return radians * 180 / .pi
}
public func bearing(location: CLLocationCoordinate2D) -> Double {
let lat1 = self.getRadiansFrom(degrees:self.latitude)
let long1 = self.getRadiansFrom(degrees:self.longitude)
let lat2 = self.getRadiansFrom(degrees:location.latitude)
let long2 = self.getRadiansFrom(degrees:location.longitude)
let deltaLat = log(tan(lat2/2 + .pi/4)/tan(lat1/2 + .pi/4))
var deltaLong = (long2-long1)
if(deltaLong > .pi){
deltaLong = (long1-long2)
}
return self.getDegreesFrom(radians: atan2(deltaLong, deltaLat))
}
}
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
| Solution | Source |
|---|---|
| Solution 1 | |
| Solution 2 | Community |
| Solution 3 | progrmr |
| Solution 4 | yawnobleix |
