'root mean square in numpy and complications of matrix and arrays of numpy
Can anyone direct me to the section of numpy manual where i can get functions to accomplish root mean square calculations ... (i know this can be accomplished using np.mean and np.abs .. isn't there a built in ..if no why?? .. just curious ..no offense)
can anyone explain the complications of matrix and arrays (just in the following case):
U is a matrix(T-by-N,or u say T cross N) , Ue is another matrix(T-by-N)
I define k as a numpy array
U[ind,:] is still matrix
in the following fashion
k = np.array(U[ind,:])
when I print k or type k in ipython
it displays following
K = array ([[2,.3 .....
......
9]])
You see the double square brackets (which makes it multi-dim i guess) which gives it the shape = (1,N)
but I can't assign it to array defined in this way
l = np.zeros(N)
shape = (,N) or perhaps (N,) something like that
l[:] = k[:]
error:
matrix dimensions incompatible
Is there a way to accomplish the vector assignment which I intend to do ... Please don't tell me do this l = k (that defeats the purpose ... I get different errors in program .. I know the reasons ..If you need I may attach the piece of code)
writing a loop is the dumb way .. which I'm using for the time being ...
I hope I was able to explain .. the problems I'm facing ..
regards ...
Solution 1:[1]
For the RMS, I think this is the clearest:
from numpy import mean, sqrt, square, arange
a = arange(10) # For example
rms = sqrt(mean(square(a)))
The code reads like you say it: "root-mean-square".
Solution 2:[2]
For rms, the fastest expression I have found for small x.size (~ 1024) and real x is:
def rms(x):
return np.sqrt(x.dot(x)/x.size)
This seems to be around twice as fast as the linalg.norm version (ipython %timeit on a really old laptop).
If you want complex arrays handled more appropriately then this also would work:
def rms(x):
return np.sqrt(np.vdot(x, x)/x.size)
However, this version is nearly as slow as the norm version and only works for flat arrays.
Solution 3:[3]
For the RMS, how about
norm(V)/sqrt(V.size)
Solution 4:[4]
I don't know why it's not built in. I like
def rms(x, axis=None):
return sqrt(mean(x**2, axis=axis))
If you have nans in your data, you can do
def nanrms(x, axis=None):
return sqrt(nanmean(x**2, axis=axis))
Solution 5:[5]
I use this for RMS, all using NumPy, and let it also have an optional axis similar to other NumPy functions:
import numpy as np
rms = lambda V, axis=None: np.sqrt(np.mean(np.square(V), axis))
Solution 6:[6]
If you have complex vectors and are using pytorch, the vector norm is the fastest approach on CPU & GPU:
import torch
batch_size, length = 512, 4096
batch = torch.randn(batch_size, length, dtype=torch.complex64)
scale = 1 / torch.sqrt(torch.tensor(length))
rms_power = batch.norm(p=2, dim=-1, keepdim=True)
batch_rms = batch / (rms_power * scale)
Using batch vdot like goodboy's approach is 60% slower than above. Using naïve method similar to deprecated's approach is 85% slower than above.
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
| Solution | Source |
|---|---|
| Solution 1 | |
| Solution 2 | goodboy |
| Solution 3 | Jérôme Verstrynge |
| Solution 4 | Ben |
| Solution 5 | dashesy |
| Solution 6 | Teque5 |
